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ABSTRACT: CsPbBr3 is a promising light-emitting material due to its wet
solution processability, high photoluminescence quantum yield (PLQY),
narrow color spectrum, and cost-effectiveness. Despite such advantages, the
morphological defects, unsatisfactory carrier injection, and stability issues
retard its widespread applications in light-emitting devices (LEDs). In this
work, we demonstrated a facile and cost-effective method to improve the
morphology, efficiency, and stability of the CsPbBr3 emissive layer using a
dual polymeric encapsulation governed by an interface-assisted grain control
process (IAGCP). An eco-friendly low-cost hydrophilic polymer poly-
(vinylpyrrolidone) (PVP) was blended into the CsPbBr3 precursor solution,
which endows the prepared film with a better surface coverage with a
smoothened surface. Furthermore, it is revealed that inserting a thin PVP nanothick interlayer at the poly(3,4-
ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/emissive layer interface further promotes the film quality and
the performance of the derived LED. It is mainly attributed to three major consequences: (i) reduced grain size of the emissive layer,
which facilitates charge recombination, (ii) reduced current leakage due to the enhanced electron-blocking effect, and (iii) improved
color purity and air stability owing to better defect passivation. As a result, the optimized composite emissive film can retain the
luminescence properties even on exposure to ambient conditions for 80 days and ∼62% of its initial PL intensity can be preserved
after 30 days of storage without any encapsulation.

■ INTRODUCTION

Inorganic perovskite CsPbBr3 holds a tremendous potential in
the field of solar cells,1 field-effect transistors,2 memory
devices,3 and light-emitting devices.4−6 CsPbBr3 turns out to
be a competitive candidate because of its cost-effectiveness,
facile color tunability, narrow full width at half-maximum
(FWHM), and high photoluminescence quantum yield
(PLQY).7,8 The major backlogs existing with perovskite
light-emitting devices (LEDs) are stability, operational lifetime,
and efficiency.9 The major contributors for such poor stability
were its improper morphology, which incurs a high density of
grain defects to serve as charge-carrier traps.10,11 Even though
much attention was paid by employing polymeric compo-
sites,12 surface additives,13,14 small molecular additives,5,15

surface passivation,16 and ligand passivation,17 there is still a
wide avenue to improve the perovskite LED credibility.
Efficiency loss poses a major threat to the scientific community
because of power scarcity and dwindling energy resources. The
presence of pinholes and unbalanced charge injection into
emissive layers (EMLs) lead to nonradiative recombination,
thereby causing efficiency loss.18,19

Several polymeric encapsulants provide good morphology
and support the smoother EML thin film formation by

controlling the crystallization kinetics.20,21 For example, a
Lewis base poly(ethylene glycol) (PEG)-doped CsPbBr3
physically fills the grain boundaries to control the grain size
and reduce the nonradiative defect sites. A highly soluble
derivative of PEG controls the morphological features and
presents many superior luminescent characteristics with
improved operational stability.21 Increasing the PAN matrices
into the perovskite emissive layer alters the diffusivity, aids the
formation of a continuous compact film, and smoothens the
charge-transfer process.22 Interestingly, Cai et al. fabricated
emissive layers with higher surface coverage and lower surface
roughness of 3 nm employing a poly(2-ethyl-2-oxazoline)
(PEOXA) polymer, which forms coordinate bonds with
metallic lead ions.23 These efforts portray the establishment
of a significant role of polymer additive engineered emissive
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layers in determining the device efficiency and luminescent
properties. To improve the efficiency and stability, the emissive
layer and the hole-injection layer (HIL) should be compatible
to establish the conformal contact and better injection and
block properties.
Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)

(PEDOT:PSS) is a commonly used hole-injection layer with
the advantages of high transparency, easy fabrication process,
high conductivity, good surface morphology, thermal stability,
and excellent mechanical flexibility.24 However, PEDOT:PSS
suffers from several drawbacks/limitations such as (i)
hygroscopic nature that traps moisture and leads to device
instability,25 (ii) acidic nature that might etch the indium tin
oxide (ITO) electrode, inducing the In ion migration,26 and
(iii) energy level misalignment/barriers between PEDOT:PSS
and the perovskite emissive layer.25,27,28 These limitations
always contribute to the unstable lifetime and higher turn-on
voltage of the perovskite LEDs.
Interlayers were employed for altering the injection and

providing good blocking ability to achieve better efficiency and
good stability. Following this principle, Koushik et al.
incorporated an atomic-layer-deposited Al2O3 interlayer
between the perovskite emissive layer and PEDOT:PSS,
which resulted in a passivation effect and harvested remarkable
photovoltaic performance.29 Similarly, Shi et al. employed a
poly-N-vinylcarbazole (PVK) layer as a modulating layer on
PEDOT:PSS because of its deeper highest occupied molecular
orbital (HOMO) level; besides, they further introduced
lithium bis(trifluoromethylsulphonyl)imide (Li-TFSI) doping
to improve the hole injection.30 Meanwhile, semimetallic
PEDOT:PSS modified with insulating Triton X-100 was
shown to effectively block electrons, as evidenced by the
reduced leakage current, thereby granting stability to the
device.31 Recently, Kim et al. suppressed the contact barrier
between the HIL and emissive layer by employing the
composite HIL made of PEDOT:PSS and insulating
MoO3.

3232 Rational comparison between evaporated and
solution-processed MoO3 suggested that the surface roughness
of the platform contributes to device deterioration.33 Meng et
al. addressed PEDOT:PSS luminescence quenching and
stability issues using solution-processed MoO3-ammonia-
treated PEDOT:PSS.34

Several works were performed with Al2O3 thin films to
improve the electron blocking, thereby enhancing the stability
of the device; however, the vapor deposition technique is
complicated.35 Recently, PEDOT:PSS with ammonia graphene
oxide was employed to reduce the energy barrier between the
injection layer and the emissive layer.36 From these studies, it
is evidenced that the grain size control, surface coverage, and
good injection properties without luminescence quenching are
essential for designing efficient and stable CsPbBr3 LEDs. As
many of the research works represent complex procedures and
expensive fabrication, there is still a need for designing a low-
cost, eco-friendly facile solution-processing strategy to enhance
device efficiency and stability.
Herein, we utilized a low-cost, eco-friendly hydrophilic

polymer poly(vinylpyrrolidone) (PVP) to modify the perov-
skite emissive layer to impart the defect state passivation. We
blend PVP into the CsPbBr3 film and use a thin PVP interlayer
underlying the emissive layer to prepare a compact pinhole-
free emissive layer and enhance the electron-blocking ability,
which the conventional PEDOT:PSS could not achieve. We
first optimized the CsPbBr3 + 5% PVP blending to achieve a

smooth film surface and decent PL characteristics, as
evidenced by field emission scanning electron microscopy
(FE-SEM), atomic force microscopy (AFM), photolumines-
cence (PL), and time-resolved photoluminescence (TRPL).
Second, we used the optimized CsPbBr3 + 5% PVP emissive
layer and the optimal PVP interlayer to achieve the grain size
control, higher surface coverage (93%), and better electron-
blocking effect. As a result, the PL stability with significantly
tripled performance in current efficiency (CE) and external
quantum efficiency (EQE, %) is manifested (in comparison
with PEDOT:PSS/CsPbBr3 + 5% PVP). Besides, the air
stability was improved, for which it maintains the PL emissive
characters (62% of its initial value) even under the exposure of
ambient room temperature (RT) and 70% relative humidity
(RH) for 30 days.

■ RESULTS AND DISCUSSION

We herein initiated our study with the surface characterizations
on the control CsPbBr3 fabricated on the conventional
PEDOT:PSS. The first stage process was done on the emissive
layer to improve the surface defect passivation and
morphological characteristics of CsPbBr3. PVP can act as a
good surface modifier, and it controls the perovskite grain
growth. The interaction between carbonyl and Pb2+ is
predominant and effectively reduces the grain defects existing
on the surface of pristine perovskite.37,38 Perovskite embedded
within such polymeric matrices can ultimately engender
sufficient grain size control. A vast number of polymers have
already exhibited good primitive role in controlling the kinetics
and morphological features of perovskite. For example,
poly(ethylene oxide) (PEO),19,20 PEG,21 methoxy PEG,12

poly(methyl methacrylate) (PMMA),1 polystyrene (PS),39

PEOXA,23 and poly(4-vinylpyridine) (P4VP)40,41 polymers
have been successfully employed in the emissive matrix of
perovskite. We herein use the functional polymer PVP for
emissive layer modifications because of its nontoxicity,
environmental stability, high transparency, solubility, low
cost, and facile solution processability.42 Substrates on which
the perovskite is grown act as the major contributor toward the
formation of highly ordered perovskite thin films, and they also
alter the grain growth rate.18,25,43 In general, for the common
perovskite LEDs, the emissive layers were constructed on top
of the PEDOT:PSS layer because of its good hole injection,
high conductivity, and high transparency. However, the
PEDOT:PSS is hygroscopic and acidic; besides, it has a low
work function and UV instability.18,44 To overcome such
inherent limitations, we employ a PVP interlayer onto the
PEDOT:PSS surface, which can improve the morphological
features, such as grain size and grain defect reduction, of the
perovskite film grown on top. It thus can reduce the hole
injection to facilitate the charge balance, leading to improved
device efficiency. Figure 1a displays the device architecture,
where indium tin oxide (ITO) acts as an anode, PEDOT:PSS
serves as the hole-injection layer, PVP acts as the (grain-
control + hole-control + electron-blocking) interlayer,45 the
perovskite−PVP blend behaves as the emissive layer, 2,2′,2″-
(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)
serves as the electron-injection and hole-blocking layer, and
LiF/Ag acts as the top cathode. The structure of PVP is given
in Figure 1b, and the corresponding energy levels of the device
are schematized in Figure 1c, with the published literature
values.5,46,47
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In this study, we initially optimized the CsPbBr3−PVP
blends. Afterward, we further introduced a PVP interlayer
modification onto the PEDOT:PSS surface to greatly suppress
luminescence quenching, grain size, and surface defects and
enhance the electron-blocking effect. In brief, CsPbBr3 was
blended with four different weight ratios (1, 3, 5, and 7%) of
PVP to optimize the quality of the emissive layer. Steady-state
PL measurements revealed PL intensity increment on the PVP
blends with the CsPbBr3 matrix and subsequent PVP interlayer
modification on PEDOT:PSS (Figure 1d). The bright green
luminescence in the inset of Figure 1d proves the emissivity of
the PVP interlayered structure, which indirectly states the
curtailment of luminescence quenching and improved surface
coverage.48 The FE-SEM cross-sectional image represented in
Figure 1e affirms the presence of a PVP interlayer between
PEDOT:PSS and the emissive layer, which possibly arrests the
excitonic quenching at the PEDOT:PSS interface.
We herein used the facile single spin-coating step to develop

a pinhole-free, smooth surface structure due to its simplicity,

cost-effectiveness, easy fabrication, and energy-efficient char-
acteristics. Figure 2 shows the FE-SEM images of pure and
PVP-blended CsPbBr3 surfaces with a PVP interlayer
architecture. Pure CsPbBr3 emissivity hampers the develop-
ment of light-emitting applications because of the grain surface
defects. The pin holes function as electrical shunt paths
producing leakage current, which eventually weaken the device
efficiency.35,49 Figure S1 demonstrates the FE-SEM image of
pure and PVP-blended CsPbBr3 surfaces without the PVP
interlayer architecture. The grain size is large and the surface
coverage is low in terms of pure CsPbBr3 developed on the
PEDOT:PSS substrate. On varying the blending ratios of PVP
from 1 to 5%, the CsPbBr3 grains are confined to a relatively
smaller size and the surface coverage is improved to a
considerable extent. We suspect that the reason for such grain
size reduction and improved surface coverage is the interaction
of PVP with Pb2+, which certainly improves the dispersivity of
the perovskite precursor.50,51 The other plausible factor is that
the PVP polymer can significantly suppress the diffusivity of
the perovskite precursor during film evolution. After the
optimum 5% PVP blending, a 7% PVP blend clearly exhibits
the agglomeration of CsPbBr3 grains, which is evidenced by
Figure S1e due to phase segregation. The grain sizes effectively
reduced from several hundred nanometers (∼300 nm) to
several tens of nanometers (<50 nm) by a PVP interlayer and a
PVP-blended emissive layer (Figure 2). In the case of the
optimized PVP interlayer/CsPbBr3 + 5% PVP film, the surface
coverage was measured to be 93% (using ImageJ software),
whereas the surface coverage of the control PEDOT:PSS/
CsPbBr3 film was only 41%. The reason for the elevated
surface coverage is the dual polymeric encapsulation
engendered by the interface-assisted grain control process
(IAGCP) (Figure 3c). Figure 3 clearly shows the grain growth
comparison on conventional PEDOT:PSS and the PVP
interlayer. This controlled grain growth is suspected due to
the successful anchoring of PVP blends onto the PVP
interlayer/PEDOT:PSS, which eventually contributed to the
precise grain growth control.52 In addition, Figure S4 clearly
illustrates the effect of PVP IL modification on the
PEDOT:PSS surface. It is worth noting that the PVP IL

Figure 1. (a) Schematic representation of the LED architecture. (b)
Molecular structure of PVP and (c) energy-level diagram of the
device. (d) PL intensity diagram of the emissive layers with various
PVP weight % and PVP interlayer (IL) and (e) cross-sectional FE-
SEM images of the interlayered CsPbBr3 emissive layer.

Figure 2. FE-SEM images of (a−e) pure CsPbBr3, CsPbBr3 + 1% PVP, CsPbBr3 + 3% PVP, CsPbBr3 + 5% PVP, and CsPbBr3 + 7% PVP on a PVP
interlayer/PEDOT:PSS/glass substrate. Insets correspond to the lower magnification (scale corresponds to 1 μm).
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smoothen platform also contributed to the formation of high-
quality EML thin films (Figure 1e).
For LED fabrication, compact smooth thin films and

uniform distribution of emissive layers are desirable for
harvesting better efficiency.43 The AFM observations were in
agreement with FE-SEM observations, and the root-mean-
square surface roughness (Rq) values indirectly complied with
FE-SEM results. The smoothness is good in the case of
optimized CsPbBr3 + 5% PVP thin film deposited on
PEDOT:PSS, and the value is ∼3.6 nm, whereas pure CsPbBr3
exhibits a detrimental roughness of 22.4 nm (Figure S2).

Utilization of the PVP interlayer significantly reduced the
surface roughness to 1.4 nm (CsPbBr3 + 5% PVP), which
portrays the development of ultrasmooth compact perovskite
thin films. We attribute the morphological changes such as
grain size reduction and smoothness to the surface energy
changes with a hydrophilic PVP platform25,37 and the
coexisting PVP matrix embedment assisted by the dual
polymeric encapsulation. Interestingly, the comparison of
AFM images (Figure S5) of PEDOT:PSS (roughness 1.3
nm) and PEDOT:PSS/PVP interlayer (roughness 0.9 nm) also

Figure 3. Schematic representation and corresponding FE-SEM images of (a, d) pure CsPbBr3 film spin-coated on PEDOT:PSS/glass, (b, e)
CsPbBr3 + 5% PVP film spin-coated on PEDOT:PSS/glass, and (c, f) CsPbBr3 + 5% PVP film spin-coated on PVP interlayer/PEDOT:PSS/glass
(IAGCP).

Figure 4. (a) CIE coordinates on PLQY measurements of pure CsPbBr3 and other PVP blends of CsPbBr3. (b) TRPL decay curves of pure
CsPbBr3, CsPbBr3 + 5% PVP, and with PVP interlayer. (c) Digital photographs of UV-exposed optimized CsPbBr3 + 5% PVP and PVP interlayer/
CsPbBr3 + 5% PVP. (d) Hole-only device injection properties with different PVP IL thicknesses spin-coated on to PEDOT:PSS/ITO/glass.
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ascertains the evolution of ultrasmooth surface characters
(Figure S3).
We intend to study the PLQY of the prepared emissive

layers, as it influences the device performance considerably.53

The uniform enhanced surface coverage of grains and defect
passivation contributed to the enhanced PLQY of 10.4%,
whereas pure perovskite exhibits PLQY of only 0.5%. These
PLQY trends are comparable and occur due to the developed
surface passivation and exclusive grain control. CsPbBr3 with
PVP (0, 1, 3, and 5%) exhibits PLQY values of 0.5, 5.9, 6.5,
and 10%, which is a direct indication of better defect
passivation. The existence of a PVP interlayer further enhances
the PLQY to 10.4%, suggesting the reduced interfacial
excitonic quenching between PEDOT:PSS and an emissive
layer. The PLQY associated Commission Internationale de
I’Eclairage (CIE) coordinate diagram elaborated the ultrapure
green color of the emissive layers obtained with various PVP
blending and interlayer modifications (Figure 4a), and its
green emissive characters followed the PLQY trend.48,54 The
CIE color coordinates are (0.1512, 0.7206) for the optimized
PVP interlayer/CsPbBr3 + 5% PVP and (0.1515, 0.7167) for
CsPbBr3 + 5% PVP (Figure 4a). The presence of a PVP
interlayer thankfully enhanced the PLQY and CIE coordinates
to a small extent without altering the PL narrow FWHM of 18
nm, featuring the healthy green emissive characteristics.
To better understand the surface defect passivation and

defect state reduction with PVP blended and PVP interlayered,
we studied time-resolved PL (TRPL) measurements fitted with
a biexponential function (Figure 4b). The decay curve results

(Table 1) affirmed the reduced nonradiative recombination of
the CsPbBr3 + 5% PVP-blended film as compared to that of
the pure CsPbBr3 film. The longer lifetime τ2 indicates the
superior applicability of the PVP interlayer design. Such a long
lifetime can be ascribed to the synergistic influence of a
compact pinhole-free surface enabled by IAGCP and improved
defect passivation, which reduces the nonradiative recombina-
tion to grant a high PLQY of 10.4%.5,53,55 Furthermore, PVP
dopants have been already utilized to suppress the contact
quenching between the injection and emissive layers, and our
result agrees with the previously reported literature.56 From
the above results, it is evident that luminescence quenching is
substantially reduced by IAGCP offered by dual polymeric
encapsulation.
In addition to steady-state PL and PLQY measurements,

images of UV-exposed PEDOT:PSS/CsPbBr3 + 5% PVP and
PVP interlayer/PEDOT:PSS/CsPbBr3 + 5% PVP films were
captured to provide the real-time visual observation differences
(Figure 4c). Additionally, we attempted to study the hole-
injection properties of the PVP interlayer with its different
concentrations. As concentration has a direct influence on the
spin-coated thin films, we utilized different concentrations to
alter the thickness of interlayers.57,58 Recently, most
researchers focused on the polymeric blending strategy to
alter the PEDOT:PSS work function to achieve a higher
HOMO level.33,44,59 We herein fabricated the hole-only device
with a PVP interlayer and monitored the current density under
varied applied forward bias. The hole-only device was
fabricated with the control PEDOT:PSS and the PVP

Table 1. Detailed Decay Parameters of TRPL Measurements

samples A1 τ1 (ns) A2 τ2 (ns) τavg (ns)

glass/PEDOT:PSS/CsPbBr3 0.4751 6.5190 0.4780 14.04 11.66
glass/PEDOT:PSS/CsPbBr3 + 5% PVP 0.3689 6.9152 0.6385 36.51 36.24
glass/PEDOT:PSS/PVP IL/CsPbBr3 0.4428 11.8111 0.6440 31.7809 27.19
glass/PEDOT:PSS/PVP IL/CsPbBr3 + 5% PVP 0.3315 14.2507 0.7415 68.6293 64.01

Figure 5. (a) Luminance vs voltage, (b) current density vs voltage, (c) current efficiency vs voltage, and (d) EQE vs voltage of pure CsPbBr3 and
PVP-blended emissive layered LED device performance.
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interlayer of different thicknesses, following the architecture of
the ITO/PEDOT:PSS/PVP interlayer (x)/CsPbBr3 + 5%
PVP/poly-TPD/Ag, where x refers to different concentrations
such as 1.0, 1.5, 3.0, and 5.0 mg/mL. The hole-injection results
evidence that the 1.5 mg/mL PVP interlayer concentration
restricts the hole injection considerably even under the applied
voltage of 5 V because of the contact barrier reduction. From
Figure 4d, it is evident that 1.5 mg/mL can retard the leakage
current and governs the hole injection into the emissive layer,
providing a balanced charge-carrier injection with the possible
promotion of device efficiency.
After the successful emergence of surface morphological and

optical characterization, we extend it to device fabrication.
First, we fabricated a set of device with the architecture glass/
ITO/PEDOT:PSS/CsPbBr3 + x% PVP/TPBi/LiF/Ag. The
current density−voltage (J−V), luminance−voltage (L−V),
current efficiency (CE), and external quantum efficiency
(EQE) characteristics are displayed in Figure 5, and their
corresponding device performance is summarized in Table 2.
The control CsPbBr3 device exhibited poor maximum
luminance, CE, and EQE of 34 cd/m2 (at 6.5 V), 0.003 cd/
A (at 6.5 V), and 0.001% (at 6.5 V), respectively. This poor
performance was apparently due to the improper surface
coverage and irregular rough surface. After blending CsPbBr3
with the PVP polymer (0−5%), the luminance, current
efficiency, and EQE (%) kept progressing because of the
improved morphological features, relatively high coverage, and
defect passivation. Table 2 shows that the optimized CsPbBr3
+ 5% PVP emissive layer on PEDOT:PSS harvested better

luminance, CE, and EQE of 1734 cd/m2 (7.0 V), 0.438 cd/A
(4.0 V), and 0.139% (4.0 V), respectively.
In the second stage, we extended the device fabrication with

the first stage optimized CsPbBr3 + 5% PVP emissive layer on
our novel PVP interlayer to monitor the influence of its
thickness on the resulting device performance. We utilized the
simple solution process to alter the thickness of the PVP
interlayer and the newly adopted device architecture composed
of glass/ITO/PEDOT:PSS/x PVP interlayer/CsPbBr3 + 5%
PVP/LiF/Ag. Our architecture is novel and unique (as many
of the LEDs follow the architecture of commercially available
expensive hole injectors, like PVK and poly-TPD) and such a
PVP interlayer is first studied along with a CsPbBr3 + 5% PVP
emissive layer to explore the stability and efficiency enhance-
ment. The AFM depth profile analysis was done with various
PVP concentrations (1, 1.5, 3.0, and 5.0 mg/mL), and the
measured average thicknesses were ∼1, 2, 5, and 10 nm,
respectively (Figure S6a−e). (The thickness measurements are
briefly given in the Experimental Section; they are performed
with five different locations and averaged to get the thickness.)
For the optimized PVP interlayer concentration of 1.5 mg/mL,
the thickness matches exactly with the FE-SEM cross-sectional
image (Figure 1e), proving the reliability of the solution
processability of this thin interlayer. The champion PVP 1.5
mg/CsPbBr3 + 5% PVP device outperformed the other devices
in terms of luminance, CE, and EQE. The CE (1.26 cd/A) and
EQE (0.369%) of the PVP interlayer were tripled in
comparison with the conventional PEDOT:PSS HIL (Figure
6 and Table 3). The luminance was almost doubled and EL

Table 2. Device Performance of Pure Perovskite and PVP-Blended Perovskite with Different Ratios

samples Lmax@bias (cd/m2)@V turn-on voltage (V) current efficiency (cd/A)@V EQE (%)@V

CsPbBr3 34@6.5 V 3.0 0.003@6.5 V 0.001@6.5 V
CsPbBr3 + 1% PVP 211@9.0 V 4.0 0.045@5.0 V 0.019@5.0 V
CsPbBr3 + 3% PVP 806@8.0 V 3.0 0.101@9.0 V 0.029@9.0 V
CsPbBr3 + 5% PVP 1737@7.0 V 3.0 0.438@4.0 V 0.139@4.0 V
CsPbBr3 + 7% PVP 340@9.5 V 3.0 0.027@9.0 V 0.080@9.0 V

Figure 6. (a) Luminance vs voltage, (b) current density vs voltage, (c) current efficiency vs voltage, and (d) EQE vs voltage of pure CsPbBr3 and
PVP-blended emissive layered LED device constructed with the novel thin layered PVP IL surface.
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FWHM was relatively reduced in the case of the PVP interlayer
champion device with a low turn-on voltage of 3 V. Our results
are comparatively better than those published in the recent
literature in terms of current efficiency and EQE
(%).5,27,32,49,60 A lowered turn-on voltage proved that lowered
energy level barriers existed between the HIL and emissive
layers. Additionally, the color stability and color purity issues
were addressed with our novel champion device excelled with
the robust emissive characteristics. Figures S7 and S8 contrast
the narrowed EL FWHM of 22 nm and stable EL CIE
ultrapure green color under lower and maximum bias values.
As our IAGCP strategy engenders dual polymeric

encapsulation, we believe that our CsPbBr3 emissive film can
retain its emissive characteristics for a prolonged period of time
even under room temperature (RT) and higher relative
humidity (RH). Figure 7a clearly demonstrates the PL stability
of our novel structured emissive layer toward higher RH% even
after 80 days. Figure 7b reveals that the PVP interlayer/
CsPbBr3 + 5% PVP film retained ∼62% of its initial PL
intensity even after 30 days of exposure to RT and 70% RH,
whereas the PEDOT:PSS/CsPbBr3 + 5% PVP film retained
only ∼50% after the same exposure time. The UV-exposure
image clearly rationalized the differences between the novel
interlayer-structured and conventional films. Although we did
not achieve state-of-the-art values, we developed a novel
IAGCP to confine the surface morphological features and
thereby increase the device performance and stability
cohesively. Our novel IAGCP can be a potential runway for
designing stable and pinhole-free perovskite thin films, and
further enhancement with the device is desired for the
futuristic advanced applications.

■ CONCLUSIONS

Our proposed IAGCP method can produce 93% compact
surface coverage with controlled grain size without any
complex expensive toxic ligands or solvents. TRPL and PL

stability results strongly corroborate the existence of a low-
defect surface, featuring the enhanced radiative recombination
process. Our novel PVP interlayer structured champion device
manifests greater EL characteristics and ultrapure green color
with 3 times increase in CE and EQE as compared to the
control PEDOT:PSS/CsPbBr3 + 5% PVP film. In addition, PL
stability was relatively high under RT and 70% RH, enabling
the wide possible directions in developing scalable, efficient,
and stable LEDs. This cost-effective solution-based IAGCP
strategy will remain at a forefront, and it will create new
opportunities in generating a more advanced and sustainable
LED fabrication process.

■ EXPERIMENTAL SECTION

Materials. Cesium bromide (CsBr, 99%) and lead bromide
(PbBr2, 99.99%) were purchased from Alfa Aesar. Patterned
indium tin oxide (ITO) glass (sheet resistance of 5 Ω) with
dimensions of 30 × 30 × 0.7 mm3 was purchased from Lumtic.
Poly(vinylpyrrolidone) (PVP, Mw = 1 300 000), 2,2′,2″-(1,3,5-
benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), LiF,
and dimethyl sulfoxide (DMSO, ≥99.9%) were purchased
from Sigma-Aldrich. Poly(2,3-dihydrothieno-1,4-dioxin)-poly-
(styrenesulfonate) (PEDOT:PSS, AI4803) was purchased
from Ossila. All of the materials were directly used without
further purification.

Solution Preparation. CsBr and PbBr2 with a molar ratio
of 1.8:1 (0.3 M) were first mixed in DMSO and then mixed
with PVP in four different weight % (namely, 1, 3, 5, and 7%)
to prepare the CsPbBr3 + x% PVP precursor solution. For PVP
IL preparation, different concentrations of PVP were made
with 1, 1.5, 3.0, and 5.0 mg/mL in dimethylformamide (DMF)
solvent.

Film Preparation and Device Fabrication. ITO
substrates were sequentially cleaned using deionized water,
acetone, and isopropyl alcohol (IPA), followed by ozone
treatment for 20 min. After cleaning, a PEDOT:PSS layer

Table 3. Performance of PVP Interlayered Devices with Different Thicknesses

samples Lmax@bias (cd/m2)@V turn-on voltage (V) current efficiency (cd/A)@V EQE (%)@V

CsPbBr3 + 5% PVP 1737@7 V 3.0 0.44@4.0 V 0.139@4.0 V
PVP 1.0 mg/CsPbBr3 + 5% PVP 2262@5 V 3.0 0.90@5.5 V 0.235@5.5 V
PVP 1.5 mg/CsPbBr3 + 5% PVP 3094@5 V 3.0 1.26@4.5 V 0.369@4.5 V
PVP 3.0 mg/CsPbBr3 + 5% PVP 1085@7 V 3.0 0.12@7.0 V 0.036@7.0 V
PVP 5.0 mg/CsPbBr3 + 5% PVP 281@8 V 3.0 0.02@8.0 V 0.006@8.0 V

Figure 7. (a) Comparison of photographs of UV-exposed glass/PEDOT:PSS/CsPbBr3 + 5% PVP and glass/PEDOT:PSS/PVP IL/CsPbBr3 + 5%
PVP emissive thin films and (b) PL stability curve of the glass/PEDOT:PSS/CsPbBr3 + 5% PVP and the glass/PEDOT:PSS/PVP IL/CsPbBr3 +
5% PVP before and after 30 days.
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(45−50 nm) was spin-coated onto the ITO glass at 3000 rpm
for 60 s and annealed at 130 °C for 15 min. The deposition of
perovskite active layer was conducted in a glovebox with the
spin-coating process onto PEDOT:PSS at 3000 rpm for 60 s
using the prepared precursor solutions. Afterward, TPBi (15.0
nm), LiF (1 nm), and Ag (80 nm) were sequentially deposited
onto the perovskite layer through thermal evaporation under 4
× 10−6 Torr pressure at deposition rates of 0.3, 0.2, and 1 Å/s
to complete the device fabrication (Figure 1a). The active area
of our fabricated device is 0.2 × 0.2 cm2. For IL devices, the as-
prepared PVP IL solution was spin-cast onto the PEDOT:PSS
at 2000 rpm for 60 s followed by 80 °C annealing prior to
depositing the perovskite precursor.
Characterization. The surface morphologies of the films

were measured by field emission scanning electron microscopy
(FE-SEM, Hitachi S-4700 scanning electron microscope) and
AFM (Bruker) in taping mode. The photoluminescence
spectra of the prepared perovskite films were measured by
Flouromax-4, while the UV−vis absorption spectra were
measured by Jasco V-730. The PLQY was measured using an
integrated sphere method, and the excitation power density
was 3.63 μW/cm2. Device’s performance including current−
voltage, luminescence, current efficiency, EQE, and EL spectra
were recorded by a spectrophotometer (PR-670) coupled with
Keithley 2400. All of the measurements were conducted in
ambient air at room temperature. TR-PL spectra were
collected for our samples, which is coupled to a spectrometer
(iHR320, HORIBA) with Hamamatsu C10910 streak camera
and M10913 slow single sweep unit.
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